From POPULAR SCIENCE Magazine, October 7, 2002

ECLIPSED
If the Eclipse gets off the ground, the idea of paying more than $1 million for a business jet will seem absurd.

Visionaries insist we'll soon be hailing small jets and zipping directly to our destinations. Will the plan fly? 
by Phil Scott

1 | 2 | 3 | 4 | 5

But is SATS the new century's equivalent of flying cars and a helicopter in every garage, a pie-in-the-sky vision that will fizzle in the face of inevitable roadblocks and old-school opposition? "A project to make flying easy and simple is just another of a long string of flashy promises," complains aviation industry analyst Richard L. Collins, an author and veteran of nearly 20,000 hours in light airplanes. Questions of safety also leap to mind: Imagine an overcrowded sky and a system that may or may not be prone to error. What happens when inexperienced pilots who have become dependent on the system are faced with an unexpected crisis? And how reliant should we be on entirely automated systems in the first place?

Henry dismisses these concerns as wildly premature. Passenger-carrying robotic aircraft are mere speculation at this point, he says: SATS as currently envisioned will still require well-trained pilots at the controls. Stackpoole concurs, adding that "there's a chance that the SATS airplane will be able to pilot itself, but that's way off, if it ever happens. We're working on near-term technology." SATS, he continues, is simply intended to ease the demands of instrument flying (and, consequently, training for instrument flying), improve a severely overtaxed system, and capitalize on an existing infrastructure of perfectly serviceable airports that these days might see only a few planes a week, if that many.

NASA and other federal agencies are enthused enough about SATS to have allocated up to $69 million over the next four years for SATS research and development, and the alliance with the FAA and various business partners, including aerospace components manufacturer Goodrich, wireless communications company Harris Corp., and Embry-Riddle, has already produced prototype SATS hardware and software.

Most of that now sits in a building at the Daytona Beach campus of Embry-Riddle that I visited recently to test-drive a generic SATS simulator. Mounted on the black wall ahead of the sim is a large screen that presents a pilots's real-world view. Below, on the sparse instrument panel, are two 10-inch-diagonal synthetic vision screens. The screens are driven by a computer called SmartDeck, engineered by Goodrich. The screen on the right shows a moving map, with real-time color representations of the aircraft's flight path, the terrain, and weather conditions. The screen on the left shows the pilot's-eye view under clear-blue-sky conditions. It displays a series of ever-smaller yellow-line boxes with what looks like an insect—a bee—in the center. That's the highway in the sky. Meanwhile, the perimeter of the left screen displays such information as speed, altitude, and compass heading.
1 | 2 | 3 | 4 | 5

(back to SATS A.I. NEWS)

(Back to Airborne Internet)